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1 | INTRODUCTION

Since January 1993, “Progress in Photovoltaics” has published six
monthly listings of the highest confirmed efficiencies for a range of
photovoltaic cell and module technologies.>~3 By providing guidelines
for inclusion of results into these tables, this not only provides an
authoritative summary of the current state-of-the-art but also encour-
ages researchers to seek independent confirmation of results and to
report results on a standardized basis. In Version 33 of these tables,?
results were updated to the new internationally accepted reference

spectrum (International Electrotechnical Commission IEC 60904-3,

Ed. 2, 2008).
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Abstract

Consolidated tables showing an extensive listing of the highest independently con-
firmed efficiencies for solar cells and modules are presented. Guidelines for inclusion
of results into these tables are outlined, and new entries since June 2021 are

reviewed.
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The most important criterion for inclusion of results into the
tables is that they must have been independently measured by a
recognized test center listed in an earlier issue® (also see
Appendix A). A distinction is made between three different eligible
definitions of cell area: total area, aperture area and designated illu-
mination area, as defined in an earlier issue® (note that, if masking is
used, masks must have a simple aperture geometry, such as square,
rectangular or circular). “Active area” efficiencies are not included.
There are also certain minimum values of the area sought for the
different device types (above 0.05 cm? for a concentrator cell,
1 cm? for a one-sun cell, 800 cm? for a module and 200-cm? for a

“submodule”).
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TABLE 1
25°C (IEC 60904-3: 2008 or ASTM G-173-03 global)

Classification

Silicon

Si (crystalline cell)

Si (crystalline cell)

Si (DS wafer cell)

Si (thin transfer submodule)
Si (thin film minimodule)
lII-V Cells

GaAs (thin film cell)
GaAs (multicrystalline)
InP (crystalline cell)

Thin Film Chalcogenide
CIGS (cell) (Cd-free)
CIGSSe (submodule)
CdTe (cell)

CZTSSe (cell)

CZTS (cell)

Amorphous/Microcrystalline

Si (amorphous cell)

Si (microcrystalline cell)
Perovskite

Perovskite (cell)
Perovskite (minimodule)
Dye sensitized

Dye (cell)

Dye (minimodule)

Dye (submodule)
Organic (cell)

Organic (minimodule)

Organic (submodule)
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Efficiency (%)  Area (cm?)
267 +05 79.0 (da)
263+ 0.4 274.3 (t)

244 +03 267.5 (t)
212+04 239.7 (ap)
10.5 + 0.3 94.0 (ap)
29.1 +0.6 0.998 (ap)
184+ 0.5 4011 (1)
242 +0.5" 1.008 (ap)
23.35+0.5 1.043 (da)
19.6+0.5 670.6 (ap)
21.0+04 1.0623 (ap)
11.3+0.3 1.1761 (da)
10.0+0.2 1.113 (da)
10.2 + 0.3%" 1.001 (da)
11.9 +0.3" 1.044 (da)
22.6 +0.6' 1.0189 (da)
21404 19.32 (da)
11.9 £ 0.4™ 1.005 (da)
10.7 + 0.4™ 26.55 (da)
88+0.3™  398.8(da)
15.2 + 0.2Md 1.015 (da)
14.1 £ 0.3% 19.30(da)
11.7 £0.29 203.98 (da)

Voc (V)

0.738

0.7502
0.7132
0.687¢
0.492¢

1.1272
0.994
0.939

0.734
0.688
0.8759
0.5333
0.7083

0.896
0.550

1.178
1.149¢

0.744
0.754¢
0.697¢

0.8467
0.8276¢
0.8177¢

Jo (mA/cm?)

42.65°
40.49°
41.47%¢
38.50%¢
29.7f

29.788
23.2
31.15°

39.58
37.63
30.25¢
33.578
21.77°

16.36°
29.72°

22.73
23440

22.47"
20.194°
18.424P

24.24°
24.48%°
20.68%"

Fill
factor (%)

84.9
86.6
82.5
80.3
721

86.7
79.7
82.6

80.4
75.8
794
63.0
65.1

69.8
75.0

84.4
79.6

71.2
69.9
68.7

74.3
69.6
69.3

Test center (date)

AIST (3/17)
ISFH (9/21)
ISFH (8/20)
NREL (4/14)
FhG-ISE (8/07)

FhG-ISE (10/18)
NREL (11/95)
NREL (3/13)

AIST (11/18)
NREL (2/21)
Newport (8/14)
Newport (10/18)
NREL (3/17)

AIST (7/14)
AIST (2/17)

CSIRO (10/20)
JET (10/21)

AIST (9/12)
AIST (2/15)
AIST (9/12)

FhG-ISE (10/20)
NPVIM (8/21)
FhG-ISE (10/19)

Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m?) at

Description

Kaneka, n-type rear IBC°
LONGi, n-type HJT*
Jinko Solar, n-type
Solexel (35 um thick)*
CSG Solar (<2 pm on glass)*?
Alta Devices*®

RTI, Ge substrate®*

NREL"?

Solar Frontier®®
Avancis, 110 cells*’
First Solar, on glass*®
DGIST, Korea?
UNSW2°

AlST??
AIST?2

ANUZ3

Microquanta, 7 cells®

Sharp?+2®

Sharp, 7 serial cells?#2°

Sharp, 26 serial cells?*2°

Fraunhofer ISE?®
ZJU/Microquanta, 7 cells®
ZAE Bayern, 33 cells?’

Note: DS = directionally solidified (including mono cast and multicrystalline), CIGS = Culn,.,Ga,Se,, a-Si = amorphous silicon/hydrogen alloy, nc-Si = nanocrystalline
or microcrystalline silicon, CZTSSe = Cu,ZnSnS,.,Se, CZTS = Cu,ZnSnS,, (ap) = aperture area, (t) = total area, (da) = designated illumination area, FhG-

ISE = Fraunhofer Institut fiir Solare Energiesysteme, AIST = Japanese National Institute of Advanced Industrial Science and Technology.

2Spectral response and current-voltage curve reported in Version 50 of these tables.
bSpectral response and current-voltage curve reported in present version of these tables.
“Spectral response and current-voltage curve reported in Version 57 of these tables.

9Reported on a “per cell” basis.

®Spectral responses and current-voltage curve reported in Version 45 of these tables.
fRecalibrated from original measurement.
BSpectral response and current-voltage curve reported in Version 53 of these tables.
PNot measured at an external laboratory.
iSpectral response and current-voltage curve reported in Version 54 of these tables.
iSpectral response and current-voltage curve reported in Version 58 of these tables.
kStabilized by 1000-h exposure to 1 sunlight at 50°C.

Initial performance. References 28 and 29 review the stability of similar devices.

MInitial efficiency. Reference 30 reviews the stability of similar devices.
"Spectral response and current-voltage curve reported in Version 41 of these tables.
°Spectral response and current-voltage curve reported in Version 46 of these tables.
PSpectral response and current-voltage curve reported in Version 43 of these tables.

9Initial performance. References 31 and 32 review the stability of similar devices.

"Spectral response and current-voltage curve reported in Version 55 of these tables.



GREEN ET AL

Results are reported for cells and modules made from different
semiconductors and for sub-categories within each semiconductor
grouping (e.g., crystalline, polycrystalline, or directionally solidified and
thin film). From Version 36 onward, spectral response information is
included (when possible) in the form of a plot of the external quantum
efficiency (EQE) versus wavelength, either as absolute values or nor-
malized to the peak measured value. Current-voltage (IV) curves have
also been included where possible from Version 38 onward. A graphi-
cal summary of progress over the 28 years during which the tables

have been published is included in an earlier issue.

Highest confirmed “one sun” cell and module results are reported
in Tables 1-4. Any changes in the tables from those previously publi-
shed? are set in bold type. In most cases, a literature reference is pro-
vided that describes either the result reported, or a similar result
(readers identifying improved references are welcome to submit to
the lead author). Table 1 summarizes the best-reported measurements
for “one-sun” (non-concentrator) single-junction cells and
submodules.

Table 2 contains what might be described as “notable exceptions”

for “one-sun” single-junction cells and submodules in the above

TABLE 2 “Notable exceptions” for single-junction cells and submodules: “Top dozen” confirmed results, not class records, measured under
the global AM1.5 spectrum (1000 W m~2) at 25°C (IEC 60904-3: 2008 or ASTM G-173-03 global)
Fill Test Centre
Classification Efficiency (%)  Area (cm?) Voc (V) Joc (MA/cm?)  factor (%)  (date) Description
Cells (silicon)
Si (crystalline) 25.0+0.5 4.00 (da) 0.706 4272 82.8 Sandia (3/99) UNSW, p-type PERC3®
Si (crystalline) 258 +0.5° 4008 (da) 07241  42.87° 83.1 FhG-ISE (7/17)  FhG-ISE, n-type TOPCon®*
Si (crystalline) 26.0 + 0.5° 4.015 (da) 0.7323 42059 84.3 FhG-ISE (11/19)  FhG-ISE, p-type TOPCon
Si (crystalline) 26.1+0.3° 39857 (da) 07266  42.62° 84.3 ISFH (2/18) ISFH, p-type rear IBC*
Si (large crystalline) 240+03 244.59 (t) 0.6940  41.58f 83.3 ISFH (7/19) LONGi, p-type PERC>®
Si (large crystalline) 252+04 242.97 (ap) 0.7216  41.64% 83.9 ISFH (5/21) LONGi, n-type TOPCon®”
Si (large crystalline) 26.6 +0.5 179.74 (da) 0.7403 42.5h 84.7 FhG-ISE (11/16)  Kaneka, n-type rear IBC°
Cells (llI-V)
GalnP 22.0+0.3° 0.2502 (ap)  1.4695 16.63' 90.2 NREL (1/19) NREL, rear HJ, strained
Allnp3®
Cells (chalcogenide)
CdTe (thin-film) 221+05 04798 (da) 0.8872  31.69! 78.5 Newport First Solar on glass®”
(11/15)
CZTSSe (thin-film) 13.0+0.1 0.1072 (ap) 0.5294  33.58% 72.9 NREL (x/21) NJUPT (10% Ag)*°
CZTS (thin-film) 110+ 0.2 0.2339(da) 0.7306 21.74° 69.3 NREL (3/17) UNSW on glass**
Cells (other)
Perovskite (thin- 255+ 08" 0.0954 (ap)  1.1885 25.74° 83.2 Newport (7/20) UNIST Ulsan*?
film)
Organic (thin-film) 182 +0.2" 0.0322 (da) 0.8965 25.72" 78.9 NREL (10/20) SJTU Shanghai/Beihang U.
Dye sensitized 12.25 £ 0.4° 0.0963 (ap)  1.0203 15.17¢ 79.1 Newport (8/19) EPFL*

Note: DS = directionally solidified (including mono cast and multicrystalline), CIGSSe = CulnGaSSe, CZTSSe = Cu,ZnSnS,4.,Se,, CZTS = Cu,ZnSnSy, (ap)
= aperture area, (t) = total area, (da) = designated illumination area, AIST, Japanese National Institute of Advanced Industrial Science and Technology,
NREL, National Renewable Energy Laboratory, FhG-ISE, Fraunhofer-Institut flir Solare Energiesysteme, ISFH, Institute for Solar Energy Research, Hamelin.
2Spectral response reported in Version 36 of these tables.

PNot measured at an external laboratory.

“Spectral response and current-voltage curves reported in Version 51 of these tables.

dSpectral response and current-voltage curves reported in Version 55 of these tables.

®Spectral response and current-voltage curve reported in Version 52 of these tables.

fSpectral response and current-voltage curves reported in Version 57 of these tables.

ESpectral response and current-voltage curve reported in in Version 58 of these tables.

hSpectral response and current-voltage curves reported in Version 50 of these tables.

iSpectral response and current-voltage curve reported in Version 54 of these tables.

iSpectral response and/or current-voltage curves reported in Version 46 of these tables.

kSpectral response and current-voltage curves reported in the present version of these tables.

'Stability not investigated. References 25 and 26 document stability of similar devices.

™Measured using 10-point IV sweep with constant voltage bias until current change rate <0.07%/min.

"Long term stability not investigated. References 28 and 29 document stability of similar devices.

°Long term stability not investigated. Reference 30 documents stability of similar devices.



GREEN ET AL

TABLE 3 Confirmed multiple-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m?) at

25°C (IEC 60904-3: 2008 or ASTM G-173-03 global)

Classification Efficiency (%) Area (cm?) Voc (V) Jsc (mA/cm?)
I1I-V Multijunctions
5 junction cell (bonded) 388+1.2 1.021 (ap) 4.767 9.564
(2.17/1.68/1.40/1.06/.73 eV)
InGaP/GaAs/InGaAs 37912 1.047 (ap) 3.065 14.27°
GalnP/GaAs (monolithic) 328+14 1.000 (ap) 2.568 14.56°
Multijunctions with c-Si
GalnP/GalnAsP/Si 35.9 +1.3° 3.987 (ap) 3.248 13.11¢
(wafer bonded)
GalnP/GaAs/Si (mech. stack) 35.9 +0.5° 1.002 (da) 2.52/0.681 13.6/11.0
GalnP/GaAs/Si (monolithic) 25.9 +0.9° 3.987 (ap) 2.647 12.21°
GaAsP/Si (monolithic) 234 +0.3 1.026 (ap) 1.732 17.34F
GaAs/Si (mech. stack) 32.8 +0.5° 1.003 (da) 1.09/0.683  28.9/11.1%
Perovskite/Si (2-terminal) 29.5+0.5" 1.121(da)  1.884 20.26¢
GalnP/GalnAs/Ge; Si 34.5+20 27.83 (ap) 2.66/0.65 13.1/9.3
(spectral split minimodule)
Other Multijunctions
Perovskite/CIGS 242+ 07" 1.045(da)  1.768 19.24f
Perovskite/perovskite 24.2+08" 1.041(da)  1.986 15.93f
Perovskite/perovskite 21.7 +0.6" 20.25(da) 2.009 14.22
(minimodule)
a-Si/nc-Si/nc-Si (thin-film) 14.0 + 0.4'° 1.045 (da) 1.922 9.94)
a-Si/nc-Si (thin-film cell) 12.7 £ 0.4'¢ 1.000(da) 1.342 13.45%
“Notable Exceptions”
GalnP/GaAs (mqw) 32.9 +£0.5° 0.250 (ap) 2.500 15.36'
GalnP/GaAs/GalnAs 378+14 0.998 (ap) 3.013 14.60'
GalnP/GaAs (mqw)/GalnAs 39.5 +0.5° 0.242 (ap) 2.997 15.44™
6 junction (monolithic) 39.2 + 3.2¢ 0.247 (ap) 5.549 8.457"
(2.19/1.76/1.45/1.19/.97/
.7 eV)
Perovskite/perovskite 264+08" 0.0494(da)  2.048 16.54°
GalnP/AlGaAs/CIGS 28.1 +1.2° 0.1386(da)  2.952 11.72¢

Fill
factor (%)

85.2

86.7
87.7

84.3

87.5/78.5

80.2
77.7

85.0/79.2

77.3
85.6/79.0

729
76.6
75.9

734
70.2

85.7

85.8
85.3
83.5

77.9
81.1

Test center (date)

NREL (7/13)

AIST (2/13)
NREL (9/17)

FhG-ISE (4/20)

NREL (2/17)

FhG-ISE (6/20)
NREL (5/20)

NREL (12/16)

NREL (12/20)
NREL (4/16)

FhG-ISE (1/20)
JET (12/19)
JET (8/21)

AIST (5/16)
AIST (10/14)

NREL (1/20)

NREL (1/18)
NREL (9/21)
NREL (11/18)

JET (2/21)
AIST (1/21)

Description

Spectrolab, 2-terminal**
Sharp, 2 term.*®

LG Electronics, 2 term.

Fraunhofer ISE, 2-term.*¢

NREL/CSEM/EPFL,
4-term.®

Fraunhofer ISE, 2-term.*’

OSU/UNSW/SolAero,
2-term*®

NREL/CSEM/EPFL,
4-term*’

Oxford PV

UNSW/Azur/Trina,
4-term.>°

HZB, 2-terminal®!
Nanjing U, 2-term.>?

Nanjing U, 2-term.>?

AIST, 2-term.”®
AIST, 2-term.>*

NREL/UNSW, multiple
Qw

Microlink (ELO)>®
NREL, multiple QW

NREL, inv. metamorphic>®

Nanjing U, 2-term.>?
AIST/FhG-ISE, 2-term.>”

Note: a-Si = amorphous silicon/hydrogen alloy, nc-Si = nanocrystalline or microcrystalline silicon, (ap) = aperture area, (t) = total area, (da) = designated illumination
area, FhG-ISE = Fraunhofer Institut fir Solare Energiesysteme, AIST = Japanese National Institute of Advanced Industrial Science and Technology.

2Spectral response and current-voltage curve reported in Version 42 of these tables.

bSpectral response and current-voltage curve reported in the Version 51 of these tables.

“Not measured at an external laboratory.

dSpectral response and current-voltage curve reported in Version 58 of these tables.

®Spectral response and current-voltage curve reported in Version 57 of these tables.

fSpectral response and current-voltage curve reported in Version 56 of these tables.

&Spectral response and current-voltage curve reported in Version 52 of these tables.

PInitial efficiency. References 36 and 37 review the stability of similar perovskite-based devices.
iStabilized by 1000-h exposure to 1 sun light at 50°C.

iSpectral response and current-voltage curve reported in Version 49 of these tables.

kSpectral responses and current-voltage curve reported in Version 45 of these tables.
'Spectral response and current-voltage curve reported in Version 53 of these tables.

MSpectral response and current-voltage curves reported in the present version of these tables.
"Spectral response and current-voltage curve reported in Version 54 of these tables.
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TABLE 4 Confirmed non-concentrating terrestrial module efficiencies measured under the global AM1.5 spectrum (1000 W/m?) at a cell
temperature of 25°C (IEC 60904-3: 2008 or ASTM G-173-03 global)

Classification Effic. (%) Area (cm?) Voc (V) lsc (A) FF (%) Test center (date) Description

Si (crystalline) 244 +0.5 13,177 (da) 79.5 5.042 80.1 AIST (9/16) Kaneka (108 cells)*®

Si (multicrystalline) 20.4+0.3 14,818 (ap) 39.90 9.833° 77.2 FhG-ISE (10/19) Hanwha Q Cells (60 cells)°®
GaAs (thin-film) 251+08 866.45 (ap) 11.08 2.303° 85.3 FhG-ISE (11/17) Alta Devices*

CIGS (Cd-free) 19.2+0.5 841 (ap) 480 0.456° 73.7 AIST (1/17) Solar Frontier (70 cells)®®
CdTe (thin-film) 19.0 £ 0.9 23,573 (da) 227.8 2.560° 76.6 FhG-ISE (9/19) First Solar®?

a-Si/nc-Si (tandem) 12.3+0.3¢ 14,322 (t) 280.1 0.902¢ 69.9 ESTI (9/14) TEL Solar, Trubbach Labs®?
Perovskite 17.9 £0.5° 804 (da) 58.7 0.3238 76.1 AIST (1/20) Panasonic (55 cells)®®
Organic 8.7+0.3" 802 (da) 17.47 0.569' 70.4 AIST (5/14) Toshiba®*

Multijunction

InGaP/GaAs/InGaAs 31.2+12 968 (da) 23.95 1.506 83.6 AIST (2/16) Sharp (32 cells)®®

“Notable Exception”

CIGS (large) 18.6 + 0.6 10,858 (ap) 58.00 4.545P 76.8 FhG-ISE (10/19) Miasole®®

Note: CIGSS = CulnGaSSe, a-Si = amorphous silicon/hydrogen alloy, a-SiGe = amorphous silicon/germanium/hydrogen alloy, nc-Si = nanocrystalline or

microcrystalline silicon, Effic. = efficiency, (t) = total area, (ap) = aperture area, (da) = designated illumination area, FF = fill factor.
2Spectral response and current voltage curve reported in Version 49 of these tables.

bSpectral response and current-voltage curve reported in Version 55 of these tables.

“Spectral response and current-voltage curve reported in Version 50 or 51 of these tables.

9dStabilised at the manufacturer to the 2% level following IEC procedure of repeated measurements.

®Spectral response and/or current-voltage curve reported in Version 46 of these tables.

fInitial performance. References 25 and 26 review the stability of similar devices.

ESpectral response and current-voltage curve reported in Version 57 of these tables.

PInitial performance. References 28 and 29 review the stability of similar devices.

iSpectral response and current-voltage curve reported in Version 45 of these tables.

category. While not conforming to the requirements to be recognized
as a class record, the devices in Table 2 have notable characteristics
that will be of interest to sections of the photovoltaic community,
with entries based on their significance and timeliness. To encourage
discrimination, the table is limited to nominally 12 entries with the
present authors having voted for their preferences for inclusion.
Readers who have suggestions of notable exceptions for inclusion
into this or subsequent tables are welcome to contact any of the
authors with full details. Suggestions conforming to the guidelines will
be included on the voting list for a future issue.

Table 3 was first introduced in Version 49 of these tables and
summarizes the growing number of cell and submodule results involv-
ing high efficiency, one-sun multiple-junction devices (previously
reported in Table 1). Table 4 shows the best results for one-sun mod-
ules, both single- and multiple-junction, while Table 5 shows the best
results for concentrator cells and concentrator modules. A small num-

ber of “notable exceptions™ are also included in Tables 3 to 5.

2 | NEW RESULTS

Six new results are reported in the present version of these tables.
The first new result in Table 1 (“one-sun cells and submodules”) is
26.3% total area efficiency for a large area silicon heterojunction
(HJT) cell fabricated on an Mé wafer (274 cm?) by LONGi Solar* and
measured by the Institute fur Solarenergieforschung (ISFH). This was

a bifacial cell measured on a reflective gold-plated brass chuck with
frontside busbar and rearside grid resistance neglecting contacting.
The result is a large improvement over the 25.3% HJT result also from
LONGi on an M2 wafer (245 cm?) reported in the previous version of
these tables (also total area, but misreported there as aperture area;
also Sanyo, not Sharp, pioneered the development of HJT cells).! Soon
afterwards, Suzhou Maxwell Technologies Co. Ltd in conjunction with
Anhui Huasun Energy Co. Ltd achieved the same 25.3% efficiency for
a HJT cell on a larger Mé wafer, followed by Sundrive Solar Pty Ltd in
conjunction with Suzhou Maxwell Technologies Co. Ltd achieving
25.8% HJT cell efficiency also on an Mé wafer, the latter using Cu
plated contacts. Since the new 26.3% result is clearly the highest con-
firmed total area Si cell efficiency yet reported, it has provided the
opportunity to introduce a new category into Table 1, the highest
total area Si cell result.

The two other new results in Table 1 are for minimodules, defined
for these tables as a package of interconnected cells of area <200 cm?.
The first is 21.4% efficiency for a 19.3-cm? perovskite cell minimodule
fabricated by Hangzhou Microquanta Semiconductor Co. Ltd
(Microquanta)® and measured at the Japan Electrical Safety and
Environment Technology Laboratories (JET). The second is 14.1%
efficiency for another 19.3-cm? minimodule but using organic solar
cells fabricated by Zhejiang University (ZJU)® in conjunction with
Microquanta and measured by the Chinese National Photovoltaic
Industry Metrology and Testing Center (NPVM). Along with other
emerging technologies, perovskite and organic cells and modules may
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TABLE 5 Terrestrial concentrator cell and module efficiencies measured under the ASTM G-173-03 direct beam AM1.5 spectrum at a cell
temperature of 25°C (except where noted for the hybrid and luminescent modules)

Classification Effic. (%) Area (cm?) Intensity® (suns)  Test center (date)  Description

Single Cells

GaAs 30.5+1.0° 010043 (da) 258 NREL (10/18) NREL, 1 junction (1 J)

Si 27.6+1.2°  1.00(da) 92 FhG-ISE (11/04)  Amonix back-contact®”

CIGS (thin-film) 233+1.2%  0.09902 (ap) 15 NREL (3/14) NREL®®

Multijunction cells

AlGalnP/AlGaAs/GaAs/GalnAs(3) 47.1 + 2.6%F 0.099 (da) 143 NREL (3/19) NREL, 6 J inv. metamorphic®®
(2.15/1.72/1.41/1.17/0.96/0.70 eV)

GalnP/GaAs; GalnAsP/GalnAs 46.0+22%  0.0520 (da) 508 AIST (10/14) Soitec/CEA/FhG-ISE 4 J bonded®’

GalnP/GaAs/GalnAs/GalnAs 457 +23% 009709 (da) 234 NREL (9/14) NREL, 4 J monolithic”®

InGaP/GaAs/InGaAs 444 + 2.6 0.1652 (da) 302 FhG-ISE (4/13) Sharp, 3 J inverted metamorphic”*

GalnAsP/GalnAs 355+1.2%  0.10031 (da) 38 NREL (10/17) NREL 2-junction (2 J)”?

Minimodule

GalnP/GaAs; GalnAsP/GalnAs 434 +2.4% 182 (ap) 340' FhG-ISE (7/15) Fraunhofer ISE 4 J (lens/cell)”®

Submodule

GalnP/GalnAs/Ge; Si 40.6 £2.0¢ 287 (ap) 365 NREL (4/16) UNSW 4 J split spectrum”*

Modules

Si 20.5 +0.8¢ 1875 (ap) 79 Sandia (4/89)' Sandia/UNSW/ENTECH (12 cells)”

Three Junction (3 J) 359+ 1.8™ 1,092 (ap) N/A NREL (8/13) Amonix”®

Four Junction (4 J) 38.9 +25" 812.3 (ap) 333 FhG-ISE (4/15) Soitec””

Hybrid Module®

4-Junction (4 J)/bifacial c-Si 342+ 1.9% 1,088 (ap) CPV/PV FhG-ISE (9/19) FhG-ISE (48/8 cells; 4 T)”®

“Notable Exceptions”

Si (large area) 21.7+0.7 20.0 (da) 11 Sandia (9/90)' UNSW laser grooved”?

Luminescent Minimodule® 7102 25 (ap) 2.5° ESTI (9/08) ECN Petten, GaAs cells®

4 J Minimodule 41.4£26%  121.8(ap) 230 FhG-ISE (9/18) FhG-ISE, 10 cells”®

Note: Following the normal convention, efficiencies calculated under this direct beam spectrum neglect the diffuse sunlight component that would accompany
this direct spectrum. These direct beam efficiencies need to be multiplied by a factor estimated as 0.8746 to convert to thermodynamic efficiencies.®!

CIGS = CulnGaSe,, Effic. = efficiency, (da) = designated illumination area, (ap) = aperture area, NREL = National Renewable Energy Laboratory, FhG-

ISE = Fraunhofer-Institut fiir Solare Energiesysteme. 4-terminal module with external dual-axis tracking. Power rating of CPV follows IEC 62670-3 standard,
front power rating of flat plate PV based on IEC 60904-3, -5, -7, -10, and 60891 with modified current translation approach; rear power rating of flat plate PV
based on IEC TS 60904-1-2 and 60891.

20ne sun corresponds to direct irradiance of 1000 W m~2.
bSpectral response and current-voltage curve reported in Version 53 of these tables.

“Measured under a low aerosol optical depth spectrum similar to ASTM G-173-03 direct.®?

9Not measured at an external laboratory.

®Spectral response and current-voltage curve reported in Version 44 of these tables.

fSpectral response and current-voltage curve reported in Version 54 of these tables.

ESpectral response and current-voltage curve reported in Version 45 of these tables.

PSpectral response and current-voltage curve reported in Version 46 of these tables.

iSpectral response and current-voltage curve reported in Version 42 of these tables.

iSpectral response and current-voltage curve reported in Version 51 of these tables.

Determined at IEC 62670-1 CSTC reference conditions.

'Recalibrated from original measurement.

mReferenced to 1,000 W/m? direct irradiance and 25°C cell temperature using the prevailing solar spectrum and an in-house procedure for temperature
translation.

"Measured under IEC 62670-1 reference conditions following the current IEC power rating draft 62670-3.

°Thermodynamic efficiency. Hybrid and luminescent modules measured under the ASTM G-173-03 or IEC 60904-3: 2008 global AM1.5 spectrum at a cell
temperature of 25°C.

PGeometric concentration.



PROGRESS IN

(A) (B)

50
100
40
80 N
£
<
<
60 € 30
® z
g g
]
“ a0 220
c
g
5
20 © 10
——LONGI Solar 26.3% n-type HJT (large crystalline) Si cell ——LONGI Solar 26.3% n-type HIT (large crystalline) Si cell
0 0
300 400 500 600 700 800 900 1000 1100 1200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Wavelength, nm Voltage, V

FIGURE 1 (A) External quantum efficiency (EQE) for the new Si cell result reported in this issue; (B) corresponding current density-voltage
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not demonstrate the same level of stability as more established cell
technologies, with references to this aspect given in the footnotes to
Table 1.

There is one new result in Table 2 (one-sun “notable exceptions”).
An efficiency of 13.0% is reported for a small-area 0.1-cm? CZTSSe
[(Cu,Ag)oZnSn(S,Se),] cell fabricated by the Nanjing University of
Posts and Telecommunications (NJUPT) and measured by the US
National Renewable Energy Laboratory (NREL). The cell absorber
material was alloyed with 10% Ag. Cell area is too small for classifica-
tion as an outright record, with solar cell efficiency targets in govern-
mental research programs generally specified in terms of a cell area of
1 cm? or larger.”™?

There are two new results reported in Table 3 relating to one-
sun, multijunction devices. The first is 21.7% efficiency for a 20-cm?
perovskite/perovskite tandem minimodule fabricated by Nanjing Uni-
versity and measured by the Japan Electrical Safety & Environment
Technology Laboratories (JET). The second “notable exception” result
is for a two-terminal, triple junction Group IlI-V tandem device where
an efficiency of 39.5% is reported for a small area 0.242-cm? GalnP/
GaAs (mgw)/GalnAs cell fabricated and measured by NREL, where
“mgw” indicates multiple quantum wells were incorporated into the
GaAs layer. This is the highest efficiency we have ever reported for a
one-sun cell although cell area is again too small for classification as
an outright record.

The EQE spectra for the new silicon cell reported in the present
issue of these tables are shown in Figure 1A, with Figure 1B showing
the current density-voltage (JV) curve for the same device. Figure 2A,
B show the corresponding EQE and JV curves for the new CZTSSe
cell plus organic and perovskite minimodule results, while Figure 3A,B

show these for the new multijunction cell and minimodule results.

3 | DISCLAIMER
While the information provided in the tables is provided in good faith,
the authors, editors and publishers cannot accept direct responsibility

for any errors or omissions.
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APPENDIX A

LIST OF DESIGNATED TEST CENTERS
A list of designated test centers is contained in an earlier issue.®> One
address change:

Newport PV Lab.

3,050 North 300 West, North Logan, UT 8434, USA.

Contact: Geoffrey Wicks.

Lab: +1 406-556-24690ffice: +1 406-556-2489

Email: geoffrey.wicks@newport.com
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